
Evaluating wav2vec 2.0 Speech Recognition and Forced Alignment on a Multi-Varietal 
Language Documentation Collection 

Applying sociolinguistic analysis in documentary contexts offers many benefits 
(Meyerhoff, 2019), but also poses several challenges: many documentation collections lack 
sufficient metapragmatic information (Di Carlo et al., 2021), include low-fidelity and noisy 
recordings (Amith et al., 2021; Ćavar et al., 2016), and remain partially unannotated or 
untranscribed. One solution to the latter two challenges is partial automation of the baseline 
annotation tasks required in documentation through automatic speech recognition (ASR), forced 
alignment (FA), and natural language processing (Ćavar et al., 2016; He et al., 2024; Jimerson et 
al., 2023; Tsoukala et al., 2023). However, as Coto-Solano (2022) notes, adapting these tools for 
minority and indigenous languages is still “difficult and expensive.” 

This work is part of an ongoing project exploring semi-automatic annotation of the 
Northern Prinmi Oral Art Collection, a multi-genre and multi-varietal documentation collection 
(Daudey & Gerong, 2018). The project aims to assist in the transcription and analysis of an 
existing documentation collection, stress-test semi-automatic annotation tools in a challenging 
context, and increase the accessibility of these tools for non-programmers. To achieve these 
aims, I developed a Python tool, wav2vec2fasr. Wav2vec2fasr includes functions for describing 
transcribed audio corpora, preprocessing transcripts and audio, and training, applying, and 
evaluating wav2vec2 models for ASR and FA.  

I applied wav2vec2fasr to the Northern Prinmi Oral Art collection, fine-tuning a variety 
of models with different tokenization schemes and hyperparameters. Analyzing model 
performance on automatic transcription of previously transcribed documentation recordings, the 
best model achieved an overall character error rate (CER) of .325, comparable to previous work 
on automatic transcription for sociophonetic analysis (Coto-Solano et al., 2021), but worse than 
models from similar projects, which range from .05 to .25 (Coto-Solano et al., 2022; Guillaume 
et al., 2022; Macaire et al., 2022). CER varied widely by recording, correlating most obviously 
with average utterance duration, recording location, and recording genre (Fig. 1). Internal 
regional variation within Northern Prinmi may impact model performance, as there are at least 
four varieties present in the collection (Fig. 2; drawn from Daudey and Gerong, personal 
communication, 2024 April 9). 

To evaluate the performance of wav2vec2 for FA, I aligned the transcribed recordings 
from the documentation corpus with both wav2vec2fasr and Montreal Forced Aligner (MFA) 
(McAuliffe et al., 2017). Following Chodroff et al. (2024), I applied MFA with an English 
acoustic model. As the corpus did not include word or phone alignments, I calculated inter-
aligner agreement between wav2vec2 and MFA as a proxy for aligner performance. Alignments 
differed substantially, with a median word onset difference of 80 milliseconds and 90% 
interaligner agreement on word onset boundaries only occurring at 410 milliseconds.  Recording 
genre strongly correlates with inter-aligner agreement (Fig. 3). Examining specific alignments, 
Wav2vec2 appears less precise in terms of phone boundaries, severely truncating consonant 
duration, while MFA struggles to align recordings of songs and deletes numerous words. This 



suggests that Chodroff et al.’s finding that MFA performs more consistently than wav2vec2 
alignments on extremely small datasets may be influenced by the speech genre of the dataset. 
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Fig. 1 — Wav2vec2 CER by average utterance duration; each point represents a recording 



 
Fig. 2 — Locations and approximate varietal groupings of recordings from the Northern Prinmi 
Oral Art Collection 



 
Fig. 3 — Difference between wav2vec2 and MFA word onset boundary alignments by genre 
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